extension | φ:Q→Aut N | d | ρ | Label | ID |
C32.1(C3×Dic3) = He3⋊C12 | φ: C3×Dic3/C6 → S3 ⊆ Aut C32 | 36 | 3 | C3^2.1(C3xDic3) | 324,13 |
C32.2(C3×Dic3) = He3.C12 | φ: C3×Dic3/C6 → S3 ⊆ Aut C32 | 108 | 3 | C3^2.2(C3xDic3) | 324,15 |
C32.3(C3×Dic3) = He3.2C12 | φ: C3×Dic3/C6 → S3 ⊆ Aut C32 | 108 | 3 | C3^2.3(C3xDic3) | 324,17 |
C32.4(C3×Dic3) = C3×C9⋊C12 | φ: C3×Dic3/C6 → S3 ⊆ Aut C32 | 36 | 6 | C3^2.4(C3xDic3) | 324,94 |
C32.5(C3×Dic3) = He3.5C12 | φ: C3×Dic3/C6 → S3 ⊆ Aut C32 | 108 | 3 | C3^2.5(C3xDic3) | 324,102 |
C32.6(C3×Dic3) = C33⋊C12 | φ: C3×Dic3/C6 → C6 ⊆ Aut C32 | 36 | 6- | C3^2.6(C3xDic3) | 324,14 |
C32.7(C3×Dic3) = He3.Dic3 | φ: C3×Dic3/C6 → C6 ⊆ Aut C32 | 108 | 6- | C3^2.7(C3xDic3) | 324,16 |
C32.8(C3×Dic3) = He3.2Dic3 | φ: C3×Dic3/C6 → C6 ⊆ Aut C32 | 108 | 6- | C3^2.8(C3xDic3) | 324,18 |
C32.9(C3×Dic3) = He3.4Dic3 | φ: C3×Dic3/C6 → C6 ⊆ Aut C32 | 108 | 6- | C3^2.9(C3xDic3) | 324,101 |
C32.10(C3×Dic3) = Dic3×3- 1+2 | φ: C3×Dic3/Dic3 → C3 ⊆ Aut C32 | 36 | 6 | C3^2.10(C3xDic3) | 324,95 |
C32.11(C3×Dic3) = C9×Dic9 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C32 | 36 | 2 | C3^2.11(C3xDic3) | 324,6 |
C32.12(C3×Dic3) = C32⋊C36 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C32 | 36 | 6 | C3^2.12(C3xDic3) | 324,7 |
C32.13(C3×Dic3) = C32⋊Dic9 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C32 | 108 | | C3^2.13(C3xDic3) | 324,8 |
C32.14(C3×Dic3) = C9⋊C36 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C32 | 36 | 6 | C3^2.14(C3xDic3) | 324,9 |
C32.15(C3×Dic3) = C32×Dic9 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C32 | 108 | | C3^2.15(C3xDic3) | 324,90 |
C32.16(C3×Dic3) = C3×C9⋊Dic3 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C32 | 108 | | C3^2.16(C3xDic3) | 324,96 |
C32.17(C3×Dic3) = C9×C3⋊Dic3 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C32 | 108 | | C3^2.17(C3xDic3) | 324,97 |
C32.18(C3×Dic3) = C33.Dic3 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C32 | 108 | | C3^2.18(C3xDic3) | 324,100 |
C32.19(C3×Dic3) = Dic3×C3×C9 | central extension (φ=1) | 108 | | C3^2.19(C3xDic3) | 324,91 |